Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps fini
نویسندگان
چکیده
Let $X$ be the product of a surface satisfying $b_2=\rho$ and curve over finite field. We study strong form integral Tate conjecture for $1$-cycles on $X$. generalize give unconditional proofs several results our previous paper with J.-L. Colliot-Th\'el\`ene.
منابع مشابه
Construction Géométrique De Représentations De Weil Sur Un Corps Fini
We construct, by contraction of a suitable complex vector bundle, the Weil representation of the finite symplectic group Sp(A). We give an explicit description of the space of all lagrangian subspaces, which we use to compute the cocycle of our representation in terms of a geometric Gauss sum. We recover in this way previously constructed generalized Weil representations (see [2, 3]) by restric...
متن کاملSur un Cas Particulier de la Conjecture de Cerny
Let A be a finite automaton. We are concerned with the minimal length of the words that send all states on a unique state (synchronizing words). J. Černý has conjectured that, if there exists a synchronizing word in A, then there exists such a word with length 6 (n − 1) where n is the number of states of A. As a generalization, we conjecture that, if there exists a word of rank 6 k in A, there ...
متن کاملQuels facteurs de pertinence pour la recherche de produits ecommerce ?
E-commerce product retrieval aims to provide a quick and efficient access to products that fit user’s needs and preferences among a tail of similar or closely related products. We participated to the “Living Lab for Information Retrieval” evaluation campaign devoted to a product search task in which real users evaluated participants’ retrieval models in real search scenarios on e-commerce websi...
متن کاملGroupe de Galois de certains corps de classes
Let K = k( √ −nε0 √ l) where ε0 is the fundamental unit of k = Q( √ l) with l a prime number congruent to 5 or 2 modulo 8, n is an integer prime to l, square free such that C2,K, the 2-class group of K, is isomorphic to Z/2Z × Z/2Z and the genus field K(∗) of K coincides with the first Hilbert 2-class field K 2 of K and let G2 be the Galois group of K 2 /K where K (2) 2 is the second Hilbert 2-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: E?pijournal de ge?ome?trie alge?brique
سال: 2022
ISSN: ['2491-6765']
DOI: https://doi.org/10.46298/epiga.2022.volume6.8550